Expression of Tissue Factor in Vasculature of Diabetic Apolipoprotein E Receptor for Advanced Glycation End Products Mediates Inflammation and Enhanced
نویسندگان
چکیده
Advanced glycation end products (AGEs) and their cell surface receptor, RAGE, have been implicated in the pathogenesis of diabetic complications. Here, we studied the role of RAGE and expression of its proinflammatory ligands, EN-RAGEs (S100/calgranulins), in inflammatory events mediating cellular activation in diabetic tissue. Apolipoprotein E–null mice were rendered diabetic with streptozotocin at 6 weeks of age. Compared with nondiabetic aortas and kidneys, diabetic aortas and kidneys displayed increased expression of RAGE, EN-RAGEs, and 2 key markers of vascular inflammation, vascular cell adhesion molecule (VCAM)-1 and tissue factor. Administration of soluble RAGE, the extracellular domain of the receptor, or vehicle to diabetic mice for 6 weeks suppressed levels of VCAM-1 and tissue factor in the aorta, in parallel with decreased expression of RAGE and EN-RAGEs. Diabetic kidney demonstrated increased numbers of EN-RAGE–expressing inflammatory cells infiltrating the glomerulus and enhanced mRNA for transforming growth factor-b, fibronectin, and a1 (IV) collagen. In mice treated with soluble RAGE, the numbers of infiltrating inflammatory cells and mRNA levels for these glomerular cytokines and components of extracellular matrix were decreased. These data suggest that activation of RAGE primes cells targeted for perturbation in diabetic tissues by the induction of proinflammatory mediators. (Arterioscler Thromb Vasc Biol. 2001;21:905-910.)
منابع مشابه
Assessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats
Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...
متن کاملReceptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice.
Advanced glycation end products (AGEs) and their cell surface receptor, RAGE, have been implicated in the pathogenesis of diabetic complications. Here, we studied the role of RAGE and expression of its proinflammatory ligands, EN-RAGEs (S100/calgranulins), in inflammatory events mediating cellular activation in diabetic tissue. Apolipoprotein E-null mice were rendered diabetic with streptozotoc...
متن کاملAdvanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملHyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model.
Although hyperhomocysteinemia (HHcy) is a well-known risk factor for the development of cardiovascular disease, the underlying molecular mechanisms are not fully elucidated. Here we show that induction of HHcy in apoE-null mice by a diet enriched in methionine but depleted in folate and vitamins B6 and B12 increased atherosclerotic lesion area and complexity, and enhanced expression of receptor...
متن کاملاثر گلوتامین بر شاخص های استرس اکسیداتیو، التهابی گلیکه و همچنین فعالیت سیستم گلیاوکسیلاز در موش های صحرایی دیابتی- آترواسکلروزی
Background and purpose: Vascular complications of diabetes are the most common causes of mortality in diabetic patients. Hyperglycemia, insulin resistance, dyslipidemia, glycation products, oxidative stress, and inflammation lead to atherosclerosis and diabetic nephropathy in diabetes. This research aimed at studying the effect of glutamine (Gln) on main causes of vascular complications in diab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001